
DAMM: Dynamic Modality Aware Weighted
Embeddings Fusion for Multimodal Meme Detection

A Preprint

Mohsin Imam ∗

University of Delhi
New Delhi, India

mohsingpu@gmail.com

Utathya Aich ∗

Machine Learning Engineer
CNH Industrial ITC, India

Department of Information Technology
Jadavpur University

Kolkata ,India
us4decaich@gmail.com

Ram Sarkar
Department of Computer Science and Engineering

Jadavpur University
Kolkata ,India

ramjucse@gmail.com

January 25, 2025

Warning: Some content in this paper may be offensive to some readers; reader discretion is advised.

Abstract

The exponential growth of social media platforms and digital communication forums, along
with the volume of data being shared, has accelerated the dissemination of information
in various forms. However, this surge has also provided masses with routes to spread
harmful content, targeting movements, communities, or individuals. Memes, as one of the
distinctive form of multimodal content, integrate visual and textual elements to convey
nuanced messages, often with a blend of humour and satire to convey complex ideas. Despite
their creative potential, memes are often exploited as a medium for advancing hatespeech.
These hateful memes frequently target specific groups, attributes, religions, or ideologies,
creating social division and animosity. This highlights the dire requirement for robust content
moderation systems to ensure that online spaces remain safe, inclusive, and respectful for all.
This has alleviated multiple research efforts focusing on capturing hatespeech in online spaces.
In this work, we propose DAMM (Dynamic Modality-Agnostic Weighted Embedding Fusion for
Multimodal Meme Detection), a novel deep learning architecture designed for multimodal
analysis. DAMM employs multiple multi-modal early fusion approach across weighted image-
image and image-text modalities to leverage the strengths of the diverse components of
memes, both visual and textual. This is achieved through two sub-modules within DAMM:
the DeepVisionMixer (DVM) and the CrossEmbeddingMixer (CEM), inputting embeddings
generated from CLIP, CNN-based EfficientNet-B3, and a RoBERTa-based text encoder
(TweetEval), effectively capturing and analyzing critical features necessary for understanding
hate speech in memes. Extensive experiments were conducted on four established datasets

— MAMI, Multioff, Memotion 3, and Misogynistic MEME (MIME), demonstrating superior
performance as evidenced by comprehensive performance evaluations. Additionally, we
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performed modality importance analysis on sample data and conducted ablation studies to
validate the optimality of DAMM ’s architectural modules.

Keywords Meme categorization · Hateful meme · Multimodal data · Information fusion · Deep learning
Need to discuss

1 Introduction

The growing digital dependence of humans has led to the exchange of everyday information primarily through
online platforms, particularly through social media such as Reddit, Twitter, Instagram, etc. Meme is one
such information exchange medium that has gained significant prominence in the digital age, functioning
as a powerful medium of communication on the internet. Memes are often composed of images with text
superimposed, complementing the visual content. They are often used for jokes, social commentary, healthy
humor, and creative expression. However, they are increasingly being used to mock individuals or groups and
attack specific ideologies, which are conventionally categorized as “hateful memes.” Hateful content generated
through such memes, containing discriminatory, racist, offensive, or violent messages, leverages their virality
to spread hate to a large audience in a much shorter time, reinforcing communal bias and extremist ideology,
provoking actions. There are multiple subcategories inside hate speech or cyberbullying spread via hateful
memes, such as misogyny, racism, religious persecution, ethnic vilification, political intolerance, etc. Previous
research describe hate speech as a hostile and harmful form of speech directed at an individual or a social
group, often targeting aspects of their inherent or fundamental characteristics [1]. Content that promotes
hostility or violence against individuals or groups is often based on specific characteristics such as ethnicity,
race, religion, disability, gender, age, or veteran status. This includes assaults targeting individuals based on
their race, identity, gender, character, disability, or other distinguishing attributes, often with the intent to
demean or harm a certain group or ideology [2]. Thus, it is important to filter such content from the Internet
and maintain a hate-free environment for users.
Hate speech has existed for a long time, initially in textual form, appearing in written materials, public
speeches, and broadcasts [3].However, in the exponentially growing digital era, it has transitioned to visual
content, complemented by text, referred to as vision-language hate speech [4]. There are multiple subcategories
inside hate speech or cyberbullying spread via hateful memes, such as misogyny, racism, religious persecution,
ethnic vilification, political intolerance, etc. Previous research describe hate speech as a hostile and harmful
form of speech directed at an individual or a social group, often targeting aspects of their inherent or
fundamental characteristics [1]. Content that promotes hostility or violence against individuals or groups
is often based on specific characteristics such as ethnicity, race, religion, disability, gender, age, or veteran
status. This includes assaults targeting individuals based on their race, identity, gender, character, disability,
or other distinguishing attributes, often with the intent to demean or harm a certain group or ideology [2].
Thus, it is important to filter such content from the Internet and maintain a hate-free environment for users.

Figure 1: Interplay of text and image in classifying memes, where the textual content influences the overall
meaning of a picture, shifts its interpretation from non-hateful to hateful.

Multimodal problems involve tasks that require the integration of data from multiple modalities or sources,
such as text, images, audio, or video, to enhance understanding and make more accurate predictions by
leveraging all available information. In contrast to multimodal problems, unimodal tasks typically involve
a single type of data, such as text,images,etc. Multimodal problems demand models that can process and
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Figure 2: Text-Image Correlation in memes highlights the relevance of influencing and perceiving the
categorization of a meme in a particular class.

combine information from diverse formats. These tasks can be particularly challenging because it is often
more difficult to fuse information from modalities that vary in scale and are independent of one another. The
interplay of text and image in classifying meme is very crucial.In Figure 1 (left), an image of an old man
resting his face on his hand with a thoughtful expression, typically conveys a neutral or positive interpretation.
The addition of Hateful text in Figure 1 (in the middle) drastically transforms the meaning of the image. The
phrase “When they asks why you dropped the muslim kid off the school to give the parents back their bomb"
reframe the same visual as symbol of hatred, making it Hateful. Whereas in the Figure 1 (right), the addition
of the phrase “Should I buy another Lamborghini, or will the neighbors start talking again?” augment a
positive or neutral narrative as a whole making the situation leaning towards non-hateful category.
Modalities Correlation. Detecting multimodal hateful memes poses a challenge due to the inherent
complexities associated with the interplay of two or more modalities. In certain cases, the textual and visual
elements are strongly correlated, which can aid in the detection and classification of the meme as either hateful
or non-hateful. As illustrated in figure 2 (left), the image of a man with high correlation to sexualizing actions
is paired with the caption “DAT ASS.” In this instance, the alignment between the visual and textual contents
clearly conveys hateful intent, making the classification process more straightforward due to the explicit visual
nature of the sexual undertones, inclining it towards the hateful category. However, it is important to note
that this does not unequivocally classify the meme as hateful. The lack of explicit association with a specific
entity, race, or group positions the meme in a negative context but not necessarily in the hateful category.
While such content might offend certain groups of social media users, others could perceive it as humorous,
highlighting the subjective nature of such memes. In contrast, in many cases, there is minimal correlation
between the modalities, making it challenging even for humans to categorize the content into a specific class.
An example of this is depicted in Figure 2 (see middle), where an image of a contemplative sun bear resting
quietly includes a caption conveying bear’s personal confession with a humorous, self-deprecating tone is
paired with “I’m Such a 9gagger That I Don’t Have Enough Courage to Call a Hooker Because I’m Afraid
of Getting Rejected.” Like aforementioned nature of subjective interpretation, it is important to note that
there is no explicit racism evident in this particular meme. The humor stems from the confession’s ironic and
exaggerated insecurity, without targeting any specific group. However, in certain contexts, subtle associations
with racial undertones could arise, particularly when interpreted in connection with stereotypes particularly
about black individuals, making it placing at liminal position in contrastive categories of hate detection
systems. In multiple cases, the counterpart visual element diverges from the ominous and threatening tone of
the text, creating ambiguity and making the intent unclear. An example of such a case is shown in Figure 2
(right), which presents a sparse representation: a woman sitting in fear, surrounded by spiders, coupled
with a caption that refers to spiders as terrorists. While this combination creates an atmosphere of fear
as visible by the state of the lady, it does not establish a direct correlation that allows the instance to be
definitively classified into either category (i.e., negative or positive). These examples when represented as
sophisticated feature embeddings, when represented in a joint feature space, results in sparse representation
which complicates the classification process. Both the text and image interaction are needed to create meaning
to determine whether a message is perceived as hateful or non-hateful. As a result, advanced representation
models are needed to effectively handle and integrate these diverse modalities to effectively capture and
integrate multimodal information to classify the meme [5].
Over the last decade, the concept of multimodal data fusion has been widely applied in the deep learning
domain, addressing various problem areas across multiple modalities [6]. In the audio-video domain, tasks
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include audio summarization, video summarization, and event detection in videos. For image-text integration,
applications encompass image captioning, visual question answering (VQA), visual entailment, visual reasoning,
and image-text retrieval. Lastly, in the video-text domain, where frames of videos are typically processed,
tasks involve video-text retrieval, action recognition in videos, and generating textual summaries of video
content. This has been achieved using models like Convolutional Neural Networks (CNNs), Long Short-Term
Memory networks (LSTMs), and attention mechanisms. Different forms of categorization have been proposed
by researchers for different types of data fusion [7].
Hierarchical feature fusion leverages the ability of deep neural networks (DNNs) to learn hierarchical
representations, allowing multimodal features to be fused at different abstraction levels rather than directly
combining raw data. This approach integrates features from various levels of the network, utilizing their
combined strengths to improve model performance more effectively. Some other forms of data fusion involve
combining data through multiple operations such as element-wise summation, multiplication, concatenation
and cross-product of different modality embeddings [8]. Decision-level fusion is a straightforward approach,
where cross-modal information is combined at the final or penultimate layers of decoders or classifiers. While
easy to implement, it offers limited flexibility and interpretability of multimodal interactions [9]. Hee et al. [4]
emphasize the importance of developing hate speech detection models that not only combine representations
from different modalities but also effectively capture the contextual subtleties of multimodal inputs.
One significant challenge is the identification and interpretation of implicit hate speech, where the harmful
intent is subtly embedded in seemingly neutral language or actions [10, 11]. This complexity arises from the
nuanced nature of human communication, where hate speech can be delivered indirectly or through coded
language, making it difficult to detect. Furthermore, obtaining data from various platforms such as Reddit,
YouTube and 4chan complicates the process due to differences in content formats and platform specific
contexts, leading to difficulties in standardization and interpretation [12]. Moreover, the uneven distribution
of hate speech across dataset presents a challenge in training and inferencing models effectively, limiting the
model’s ability to generalize [13].
To address the research gaps of implicit hate speech, data complexity, model generalizability, and adaptability,
we introduce Dynamic Modality Agnoistic Weighted Embeddings Fusion for Multimodal Meme Detection
(DAMM), a deep learning-based architecture designed to tackle these challenges. DAMM employs a multiple-feature
fusion design, which integrates a prior distribution loss function powered by multi-head attention mechanism
for both binary-class and multiclass classification of memes into hateful and non-hateful categories. To
effectively weigh the fused-modality representations of both text and image features, we incorporate a squeeze
block that is integrated with the fused embeddings, which is specifically designed to enhance the model’s
ability to understand and classify complex, multi-modal content in a nuanced and context-aware manner.
In brief, following are the main contributions of our paper:

• We introduce dynamic weighted embeddings leveraging an early fusion approach that integrates
intra-modality and inter-modality fusion for rich contextualization of spatial and linguistic features
for robust meme classification in a multimodal setting.

• We employ a Squeeze-and-Excitation (SE) block to dynamically adjust the intra-modality visual
weighting for feature representations generated by CLIP and EfficientNetB3, allowing the creation
of a fused representation, where the contribution of each modality is adaptively optimized. This
fused representation is further combined with text features from TweetEval, ensuring that the most
relevant features from both visual and textual modalities are emphasized. The SE block assigns
higher weights to the modality that contributes more significantly, maintaining most relevant features
from each modality are emphasized in the final representation.

• We perform a thorough evaluation on a range of hatespeech genres including misogyny, political
offensiveness, standard hatespeech, enabled by analysis of four datasets, namely MAMI, MultiOFF,
Memotion 3 and Misogynistic-MEME (MIME), seminal in multimodal hatespeech research and
demonstrate the effectiveness of DAMM by performing detailed ablation analysis.

2 Related Work

Due to the high usage of memes in spreading hate and persuading the public against specific ideologies or
political movements, a significant number of researchers have focused on detecting hateful content on social
media. In this section, we formally discuss previous research pertaining to multimodal hate meme detection.
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Although advancements have previously been made, machine learning has significantly enhanced hate speech
detection across languages by employing supervised models like FastText, SVM, Multinomial Naïve Bayes,
and Logistic Regression. These models classify hate speech in datasets from platforms like Twitter, YouTube,
and Wikipedia, addressing diverse categories such as hateful, offensive, and clean content with improved
accuracy [14, 15, 16, 17]. Since, memes consist of both visual and textual elements, making a multimodal
framework essential for their detection. Such frameworks integrate image analysis with language processing to
evaluate the visual and textual aspects of memes simultaneously. To find a proper fusion strategy, researchers
have explored various fusion methods, primarily categorized into early fusion and late fusion approaches [18].
Nguyen et al. [19] addressed the challenge of multimodality in hate meme classification on Memotion 2.0
dataset, by leveraging advanced attention mechanisms such as multi-hop attention and stacked attention to
produce comprehensive aggregated features. To tackle the issue of data imbalance, they employed an auto
augmentation method. For feature extraction, they utilized EfficientNet-V2 for images and for text they
used RoBERTa and LSTM . The authors explored three types of fusion models: concatenation, multi-hop
attention, and stacked attention networks. Additionally, they implemented a reinforcement learning-based
augmentation technique that dynamically generates optimal augmentation strategies. To ensure that the
visual modality focuses solely on the image content, they used the EAST (Efficient and Accurate Scene Text
Detector) module to detect the the text and remove it from the images before extracting visual features.
For the sentiment detection task, their dual-modality fusion approach with multi-hop attention achieved a
Weighted F1 score of 0.5316.
Deng et al., in [20], proposed MuAL, a lightweight model that addressed limitations often encountered
with contrastive learning-based models like CLIP or BLIP, as well as large transformer-based models like
VisualBERT. MuAL employed Cross-Modal Attention (CAM) for cross-modal information integration,
enabling it to capture richer semantics between modalities. The authors introduced a difference loss function
to reduce discrepancies in image and text feature representations by imposing a constraint, thereby enhancing
the model’s robustness. Their approach outperformed existing methods. The authors also focused on testing
their approach by freezing the underlying pre-trained models, highlighting MuAL’s suitability for transfer
learning. However, the study did not discuss the potential noise that could have arisen when integrating
features from different modalities using CAM.
In the work [21], researchers proposed a targeted approach for detecting hateful memes with a focus on
religious sentiments. They curated a dataset comprising over 2,000 meme images paired with their respective
captions. For feature extraction, they utilized a ResNeXt-152-based Mask R-CNN for images and BERT for
encoding text features, for the generation of a comprehensive feature representation. These features were
combined using an early fusion technique. Additionally, the solution was fine-tuned with VisualBERT. To
diminish biases in the collected dataset, the authors extended it by incorporating the Facebook Hateful
Memes dataset. However, since the study mainly focused on religious hateful memes, the authors did not
explore expanding their approach across diverse culture, heritage, or geographical contexts.
The study conducted by Wang et al. [22] focused on a comparative analysis of UNITER (UNiversal Image-
TExt Representation) [23], a unified stream approach that processes image and text pairs together in a single
stream, and the processing of independent image and text features of misogynistic memes using CLIP. The
test aimed to evaluate how strongly or weakly the image and text were related. The authors used XGBoost
as a final classifier, which gave the best results when features were extracted with CLIP. The study also
examined the effect of domain shift, where both approaches performed worse compared to cases with no
domain shift. However, CLIP performed better than UNITER in domain shift scenarios. From this analysis,
they proposed the PBR (Pretrained, Boosting, Rule-based adjustments) method for misogyny detection, aided
by manual rule-based adjustments. The proposed approach involved training XGBoost on image features
extracted by CLIP and fine-tuning UNITER and BERT for image-text and text-only tasks using the MAMI
dataset. Subsequently, the XGBoost predictions were refined using outputs from UNITER and BERT along
with logical inference, achieving the highest macro F1 score of 0.834, placing first in SemEval-2022 Task 5.
Roy et al. [24] created a framework called MMFFHS (Multi-Modal Feature Fusion for Hate Speech Detection
on Social Media) to detect hate speech using both text and images. This method was tested on a large dataset
with 150,000 examples, divided into six groups: homophobic, religious, other hate, racist, sexist, and non-hate.
For text, the framework used an LSTM model, and for images, it used ResNet50. The features from both
text and images were combined and passed through a dense layer to classify the data. This research aims
to detect hate speech on social media platforms like Twitter, Facebook, and YouTube, using both text and
images. Three setups were tested: using only text and image, respectively and using both (multimodal). The
LSTM model alone achieved an accuracy of 0.69, and combining text and image data gave better results.
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Results showed that combining text and image data worked best, with precision of 0.72, recall of 0.68, an F1
score of 0.69, and accuracy of 0.70.
Arya et al. [25] proposed a contrastive learning framework combined with prompt engineering techniques to
identify hate speech in viral meme content on social networking platforms. The authors leveraged CLIP to
study the model’s ability to correlate image and text features associated with memes. They set a threshold
of 20% for classifying memes as non-hateful, acknowledging that the model may fail to relate image and text
features even if the meme is inherently hateful.To enhance classification accuracy, they developed custom
prompts for “good memes” and “hateful memes,” which were used to classify memes. For memes exceeding
the 20% threshold on matching the image features and associated text features in a shared latent space, the
authors further calculated the cosine similarity between image and caption embeddings against predefined
“good meme” and “hateful meme” templates. If both the image and caption showed stronger similarity to the
“hateful meme” description, the meme was classified as hateful; otherwise, it was categorized as “non-hateful.
In [26], to analyze the intricate relationship between meme images and their embedded captions, a triplet
relation model was proposed to improve the connection between visual regions of memes and their associated
captions, addressing the complex reasoning required for hate meme analysis. The model comprised an
encoder-decoder module to generate captions for the image, an OCR extraction module, and an object
detection module powered by R-CNN to extract semantic regions from the meme. The unified text and image
modalities were then fed into a triplet relation network within a transformer block, leveraging self-attention
mechanisms. Experiments were conducted with both one-stream and two-stream approaches: in the one-
stream approach, textual embeddings were combined before processing, whereas in the two-stream approach,
the two textual embeddings were processed separately. Another study by Yang et al. [27] explored the fusion
of meme visual and associated textual features using a combination of 1D CNN, max pooling, and MLP. The
study demonstrated the comparative effectiveness of various fusion approaches, including attention-based
fusion, gated fusion, and bilinear fusion techniques.
The proposed architecture leverages a multi-level fusion strategy across multiple hierarchical levels of image
representation from dual visual models, followed by the integration of both image and text modalities enabled
by a RoBERTa-based encoder. We utilize the Squeeze-and-Excitation (SE) mechanism to enhance feature
representations of the image modality through the synergistic use of EfficientNetB3 and CLIP models for
improving visual understanding of meme images. For the textual modality, we employ the TweetEval model,
known for its robust performance in sentiment analysis tasks. This dual-modality approach facilitates rich,
contextualized representations, which are subsequently fused to improve the model’s overall performance. A
comprehensive description of the methodology is provided in the subsequent section.

3 Methodology

To address the complex relationships inherent in meme hate detection, we propose DAMM, Dynamic modality
Aware weighted embeddings fusion for Multimodal Meme detection, as shown in Figure 3, a three-stage
framework leveraging an early fusion strategy. This approach integrates both intra-modality and cross-
modality interactions, specifically focusing on the interplay between image and text modalities. The framework
is designed to capture and represent the nuanced features associated with each modality more effectively,
thereby enhancing the detection capabilities for hate speech in multimodal contents. In the following sections,
we discuss each module and step of the framework in detail, highlighting their rationale and relevance in
constructing DAMM.
Problem Formalization. Given a meme X, let the meme image be represented as Xi, where i ∈ {1, 2, . . . , n},
with n being the total number of samples in our dataset, and the associated caption as Xt. Each meme X
comprises two modalities: m ∈ M , where M = {Image, Text}. The objective is to classify each meme X into
one of the predefined classes {C1, C2, .., Ck}, where k represents category of memes primarily non-hateful
or normal memes and hateful memes. Hateful memes include content that is objectifying, derogatory, racist,
or contains other forms of harmful or offensive messaging.

3.1 Dynamic modality Aware weighted embeddings fusion for Multimodal Meme detection
(DAMM)

Our framework, referred to as DAMM, as shown in Figure 3 designed to address the binary and multiclass
problem of distinguishing between hateful and non-hateful content. The key innovation of DAMM lies in its novel
weighted embedding fusion mechanism, which leverages embeddings from multiple modalities. The fusion
process is enabled by two modules proposed within DAMM: DeepVisionMixer (DVM) and CrossEmbeddingMixer
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Figure 3: The overall architecture of DAMM is used for multimodal meme classification. Stage I comprises
generating embeddings from CNN (EB3) and CLIP, which are used as inputs in the DVM block for generating
detailed visual features. In stage II, the CEM takes the meme text embedding and the DVM’s output as
input, generating a cross-modal representation of the whole meme. This is then passed to the stage III of
DAMM, aided by Multi-Head Attention and a Feed Forward Neural Network, for final classification.

(CEM). The DVM module plays an important role in processing and understanding visual features, ensuring
that the extracted embeddings are both contextually aware and rich in semantic details. These embeddings
are generated by two distinctive visual-spatial feature generation models. Meanwhile, the CEM module
is dedicated to combine embeddings across modalities, enabling interaction between diverse data streams
such as text and image features. Together, these modules ensure that embeddings from each modality
are not only concatenated but integrated in a way that focuses on their contextual and complementary
contributions which is important in multimodal tasks emphasizing on mutual fusion (refer to the section
4.4). This advanced approach addresses the limitations of traditional fusion techniques, such as simple
concatenation, by generating weighted, contextualized, and robust embedding representations. Through
extensive experimentation, we have demonstrated that the weighted embedding fusion mechanism employed
by DAMM consistently outperforms existing approaches, providing a powerful and effective solution for tackling
challenging multimodal tasks like meme classification.

3.1.1 Weighted Embedding Fusion

The weighted embedding fusion process is performed via squeezing the modalities and simple concatenation.
In squeezed approach, the feature representation vector is passed through a dense layer for performing linear
squeeze operation, which outputs a scalar value of R1×1. This scalar value, derived from the respective
embeddings, is then concatenated (⊕) along the first axis. Squeezing, intrinsically captures a global summary
of the respective embeddings, which is crucial for assigning weight contributions to the embeddings. This
weight assignment is achieved through a dot product (⊙) operation between the scalar output of the squeezed
approach and the feature representation from the simple concatenation operation known as unsqueezed
concatenation. Unsqueezed concatenation (or normal concatenation), preserves the embeddings in their
dimensions by combining them without any transformation or compression, to enable compatibility for the
dot product operation, the resulting feature representation is reshaped appropriately. These comprehensive
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embeddings, enables the fusion process to leverage both the global summary and the detailed feature
representations effectively.
Let us consider two embeddings from two modalities generated from respective modality specific encoder,
denoted as I1 and I2, where I1 ∈ R1×a and a representing the embedding dimension of I1. Similarly,
I2 ∈ R1×b, with b representing the embedding dimension of I2 such that a >= b or b >= a. The final
weighted embeddings is implicitly determined through the dot product of the embeddings, i.e., the squeezed
and unsqueezed concatenated embeddings.
The squeeze function, denoted by Fsq, is applied to feature representation of both modalities (I1, I2) as
follows:

i1 = Fsq(I1), i2 = Fsq(I2) (1)

where i1 ∈ R1×1, i2 ∈ R1×1. These squeezed embeddings are scalars derived from the input embeddings.
The squeeze function, Fsq, has a learnable parameter W , where W ∈ Rn×1, and n represents the size of the
feature input for a particular modality. The squeeze function is defined as Fsq = W · I, where I represents
embedding from some given modality.
Following the application of the squeeze operation on both modalities, the concatenation of these embeddings,
i1 and i2, facilitated by the concatenation function Fc along the first axis, combines the squeezed embeddings
as:

ifsq = Fc(i1, i2), where Fc(i1, i2) = i1 ⊕ i2 (2)

Here, the concatenated embedding ifsq
∈ R1×2 represents the fused squeezed representation of the two

modalities.
Since the calculation of the weighted embedding requires the unsqueezed (or normal) concatenated embedding,
it is obtained using Fc, which takes as input the original embeddings derived from the respective modality
encoders. The unsqueezed concatenation is defined as:

if = Fc(I1, I2), where Fc(I1, I2) = I1 ⊕ I2 (3)

Now, after obtaining both the squeezed concatenation ifsq and the unsqueezed concatenation if , dot product
operation is performed after reshaping if to avoid dimensionality issues. This operation integrates the
information from both modalities by leveraging their respective representations. The dot product is defined
as:

iw = Fw(isq, if ), where Fw(ifsq , if ) = ifsq · if (4)

where iw represents the weighted embedding, encapsulating the fused information from both modalities. This
step ensures that both the compressed scalar embeddings (ifsq

) and the full-dimensional concatenated (If )
embeddings contribute to the final fused representation.
The produced weighted embedding leverages scalar weights generated via squeezed operation, Fc, which
adjusts the importance of each modality based on its context, ensuring relevance for the specific modality.
This is not only limited to cross-modality; even when two feature representations are obtained via different
encoders but from same modality or same data, the it allows for weighing the importance of different
features based on data from the same modality (i.e., intra-modality). Moreover, the scalar weights offer clear
interpretability, focusing on the contribution of each modality, improving the semantic understanding when
dealing with cross-modality and intra-modality tasks. Additionally, this weighted embedding function, Fw,
can be extended to multiple modalities as well. Thus, this modality-agnostic embedding generation makes it
more scalable to other multimodal tasks, making it more versatile compared to existing methods. This novel
weighted embedding fusion approach in the DVM and CEM modules leads to a richer, more nuanced, and
contextualized representation of multimodal data, leading to superior performance.

3.1.2 DeepVisionMixer — DVM

DeepVisionMixer is the first stage of DAMM, which extracts embeddings from both a CNN-based model and
CLIP. Based upon [28], where the proposed fusion method learns relationships between the modalities’
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Figure 4: An illustration of the DeepVisionMixer, which takes as input the feature representation from the
CNN and CLIP encoder.

dependence for textual and visual modalities of memes, we adopt a similar approach. They used a squeezed
and excitation block for cross-modality interaction, which we have projected in the DVM block, but for
the same modality i.e., intra-modality — the visual modality from the meme image (see figure 4). Since
combining text with image modalities for memes is a well-established fusion based method for addressing
meme classification, the rationale for using the same modality and exploiting their relationship via weighted
embeddings is to examine the impact of different visual feature extraction models when combined with the
text modality. Features from the image data are extracted using two feature representation models: CNN and
CLIP. CNN focuses on extracting deep visual features, which are crucial for capturing fine-grained spatial
details in images. In contrast, CLIP, built on a contrastive learning framework, excels in aligning visual
features with semantic concepts due to its multimodal pre-training on vast image-text pairs. CLIP’s strength
in encoding semantically rich, text-aligned representations enhances the overall feature quality, enabling
robust performance in tasks requiring both low-level detail and high-level abstraction. Thus DVM block
serves a critical component in DAMM framework designed to effectively integrate visual features produced
through a dual channel (i.e., CNN and CLIP). This enables DAMM to facilitate a comprehensive understanding
of visual data enabling enhanced meme image understanding.
EfficientNet-B3 (EB3) — EfficientNet [29] is a hierarchical family of CNNs that focuses on computational
efficiency while enhancing performance. The EfficientNet-B3 model, a variant within this family, is designed
to achieve a high level of accuracy while maintaining computational efficiency. The core building component
of EfficientNet-B3 is based on compound scaling principle. The scaling factors are determined by a compound
coefficient. Unlike traditional CNN architectures that scale depth, width, or resolution independently,
EfficientNet scales these three dimensions in a balanced manner to achieve better performance with fewer
resources. The compound coefficient determines the optimal scaling of all three dimensions, improving
the network’s accuracy and efficiency. Each version (EfficientNet-B0 to EfficientNet-B7) applies a different
compound scaling factor, leading to differences in performance and computational cost. The transition
from EfficientNetB0 to EfficientNet-B3 increases the depth, width, and input resolution, resulting in better
performance.
The core of EfficientNet-B3’s architecture is based on Mobile Inverted Bottleneck Convolutions (MBConv),
which leverage depthwise separable convolutions. This enables a reduction in computational complexity while
maintaining or improving performance compared to other existing convolutional architectures. EfficientNet-B3
uses squeeze-and-excitation (SE) blocks to further enhance feature representation by refining channel-wise
feature responses.
CLIP — CLIP [30], which stands for Contrastive Learning-Image Pretraining, is a framework introduced by
OpenAI based on the contrastive learning methodology to learn image and text representations in a shared
embedding space. The focus is on training a single model that can associate natural language descriptions
with corresponding images and effectively differentiate non-similar images. This capability can be utilized
for multiple problems involving image and text modalities, making it a state-of-the-art choice for many
multimodal tasks. The essence of contrastive learning lies in mapping both images and their corresponding
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textual descriptions into a joint embedding space. The training objective, aided by contrastive loss, persuades
the model to contrast positive pairs (correct pairs of images and their descriptions) with negative pairs
(incorrect combinations of images and text). CLIP’s training goal is to maximize the similarity between
positive pairs while diminishing the similarity of incorrect (or negative) pairs.

L = − log
(

exp(sim(vi, ti)/τ)∑
j exp(sim(vi, tj)/τ)

)
(5)

In equation 5, the variable vi denotes the image embedding for the i-th image, while ti represents the
corresponding text embedding. The function sim(vi, tj) computes the cosine similarity between the image
embedding vi and the text embedding tj . The parameter τ is a temperature term that adjusts the sharpness
of the softmax function.

The training of CLIP on a vast dataset (~400 million image-text pairs) curated from a variety of publicly
available sources on the Internet allows it to generalize to many unseen tasks, such as image classification
and object detection, using only textual prompts eliminating task-specific retraining. In addressing our
problem, we leverage CLIP directly for feature extraction, as the majority of the visual content in meme
images aligns well with the data on which CLIP has been pre-trained. While fine-tuning would undoubtedly
improve feature enrichment, we opted not to, due to computational constraints. We chose to freeze CLIP’s
weights to preserve its generalization ability and avoid overfitting. Fine-tuning CLIP on a small dataset could
compromise its ability to maintain the broad, however, high-level semantic features needed for grasping the
contextual and conceptual aspects of memes.
We leverage CLIP-ViT-B-32 for image feature extraction in the intra-modal fusion of the DVM block,
we normalize image embeddings using the L2 norm along the last dimension of the extracted embeddings,
preserving the normalized feature dimensions for appropriate further operations, ensuring that the embeddings
lie on a unit hyper-sphere. This process confirms numerical stability and scale invariance, which are important
for the balanced alignment. This normalization is numerically expressed in the following equation:

vnorm = v
||v|| 2

= v√∑m
i=1 v2

i

(6)

Mathematically, the operations performed in the DVM block are as follows:
Let X denotes an arbitrary sample from the dataset, with Xi representing the meme image and Xt the
corresponding OCR caption from the meme image. The feature vector obtained from the CNN block is (i.e.,
from EfficientNetB3) represented as Xi

CN , where Xi
CN ∈ R1×1536 and the feature vector obtained from CLIP

is represented as Xi
CLP where Xi

CLP ∈ R1×512. The first operation involves a squeeze operation, which is
essential for enabling the weighted embedding, and is defined as:

xi
CN = Fsq(Xi

CN ), xi
CLP = Fsq(Xi

CLP ) (7)

The Fsq represents the squeeze function, which produces the global summaries of the input feature represen-
tations obtained from EfficientNetB3, denoted as xi

CN , and from CLIP, denoted as xi
CLP (see equation 1).

These summarized feature representation are then concatenated represented as xi
fsq

, which then undergo two
dense neural network layer neural network layers:

xi
fsq

= Fc(xi
CN , xi

CLP ) (8)

The Fc represents the concatenation function as described in section 3.1.1. This obtained concatenated
summarized features contains representation from both image features obtained from respective models which
is fed into Fac activation, containing a dual series of dense layer, where first dense layer is powered by rectified
linear unit, ReLU (R) activation function, and the latter one is supported by Sigmoid activation function, S,
as follows:

x̄i
fsq

= Fac(xi
fsq

), where x̄i
fsq

∈ R1×2 (9)
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Fac(xi
fsq

) = R(WR(S(WS · xi
fsq

))) (10)

In equation 10, WS and WR, refer learnable weight matrices for enabling appropriate shape for performing the
intra-modality weighted fusion. The purpose of the passing summarized feature representation (xi

fsq
) through

the ReLU activation function (R) and subsequently through Sigmoid activation (S) is to refine and normalize
the squeezed modal weights for effective fusion, enabling the generation of intra-modality representations
essential for classification. R introduces non-linearity by emphasizing positive inter-dependencies and
suppressing insignificant or negative values, ensuring robust feature selection. This step enhances sparsity
and highlights dominant modal features. S maps the refined values into the range (0, 1), converting them
into normalized probabilistic weights that emphasize the importance of the features obtained from their
respective models.
To obtain the normal concatenated fusion from the initially extracted features from the respective encoders
(Xi

CN , Xi
CLP ), these features are combined using the concatenation function Fc (refer to equation 2). The

concatenated output is then reshaped into dimensions of 2 × (N /2), where N represents the fused embedding
weight in the latent space. This process allows the generation of the weighted fusion between x̄i

fsq
and xi

f ,
producing the final output of the DVM block, XDV M , as follows:

xi
f = Fc(Xi

CN , Xi
CLP ) = Xi

CN ⊕ Xi
CLP , where xi

f ∈ R1×2048 (11)

xi
f ∈ R1×2048 → RESHAPE → xi

f ∈ R1×2×1024 (12)

Xi
DV M = Fw(x̄i

fsq
, xi

f ), Xi
DV M ∈ R1×1×1024 (13)

The Xi
DV M representing the fused intra-modality based on the weighted embedding mechanism serves as one

of the inputs for the second stage of DAMM i.e., CrossEmbeddingMixer (CEM) as discussed in the following
section.

3.1.3 CrossEmbeddingMixer — CEM

The CEM module is the second stage of DAMM. This stage is akin to the typical multimodal classification
framework, which generally involves two different modalities, typically text and image, for most meme-
focused problems. As visible in figure 5, the CEM block is build upon DVM block with multiple variations.
In multimodal settings, visual content, independently, often falls short of providing sufficient clarity for
categorizing data into a specific category. Textual data can often independently aid classification due to its
explicit nature, such as the presence of words that directly indicate detrimental categories, including abusive
language or racist remarks. In such cases only, the significance of other modalities may be undermined. CEM
enables inter-modal fusion, where the visual modality encompasses the already fused intra-modal available
from the DVM block, and the textual available from each dataset, generally extracted by different methods.
TweetEval [31] is an unified benchmark designed to study Twitter data in the NLP landscape, introduced by
the Cardiff NLP group. It consists of seven main tasks that capture essential aspects of natural language
evident in most tweets, including sentiment analysis, emotion recognition, irony detection, stance prediction,
and emoji detection. Notably, the evaluations for benchmarking are performed independently but are
encompassed within the same TweetEval framework. While primarily focused on classification, TweetEval’s
structure is highly versatile, with potential applications extending to multi-label and multimodal tasks. We
have employed the fine-tuned RoBERTa-base model utilized in TweetEval’s evaluation made available from
hugging face2. This model, trained on approximately 58 million Twitter tweets, was further fine-tuned
specifically for sentiment analysis under the TweetEval benchmark. In our experiments, we have utilized
TweetEval for feature extraction due to its relevance to hate speech detection tasks. TweetEval includes
datasets and models fine-tuned for textual analysis, particularly in domains like hatespeech, making it
well-suited for extracting features from the OCR-generated captions of memes. This ensures the linguistic
nuances of hatespeech are effectively captured, thereby cooperating with a multimodal focus of our study.
The operation in the CEM blocks begins by projecting the text and fused (intra-modal) image embeddings
into scalar values to produce global summaries. The text feature, represented by Xi

T L, is extracted using a
2https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
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Figure 5: An overview of the CrossEmbeddingMixer, which takes as input the intra-modal fused embedding
from the DVM block and the TweetVal-generated representation derived from meme-embedded text, producing
a cross-modal representation of the meme image.

fine-tuned TweetEval model on the respective datasets. This process is performed similarly to the approach
used in the DVM block, as follows:

xi
DV M = Fsq(Xi

DV M ), Xt
T L = Fsq(Xt

T L), where Xi
DV M ∈ R1×1×1024, xt

T L ∈ R1×768 (14)

Here, the squeezed xi
DV M ∈ R1×1 represents the compressed (fused) image modality, while xt

T L ∈ R1×1

denotes the suppressed text modality.

xc
f = Fc(Xi

DV M , Xt
T L) (15)

xc
fsq

= Fc(xi
DV M , xt

T L) (16)

In equation 15 and equation 16, the concatenation operation (as shown in equation 2) of inter-modalities
takes place, producing the concatenated form of squeezed image-text features, i.e., xc

fsq
∈ R1×2. Additionally,

the base form of concatenated image-text features is obtained in a similar way, i.e., xc
f ∈ R1×1792.

However, the CEM block differs from the DVM block with the introduction of an LSTM block (shown in
figure 5) through which the squeezed inter-fused feature vector is passed.
LSTM — LSTM were introduced to overcome the limitations of RNNs, particularly the well-known issue of
vanishing gradients during backpropagation in RNNs. This issue arises when gradients diminish exponentially,
hindering the network’s ability to capture long-range dependencies in sequential data. To address this, LSTMs
are designed with memory cells and gating mechanisms. LSTMs excel at learning long-range dependencies in
sequential data, particularly in tasks like language modeling, speech recognition, and time-series analysis.
However, LSTMs are also known to enhance performance when combined with different neural networks, even
when the problem is not explicitly sequential [32]. The main components of an LSTM—the forget, input,
and output gates—allow the network to regulate the flow of information, selectively retaining long-term
dependencies while discarding irrelevant details. This ability to store and retrieve information selectively over
extended sequences makes LSTMs highly effective for a variety of machine learning and deep learning tasks,
which we leverage in the CEM block as well.
Although the presence of dual activation functions enhances the summarized representations of the fused
features (see sub-section 3.1.2), some disadvantages exist, such as it may suppress valuable information
containing important context, which could be crucial for correctly weighing the unsqueezed embeddings. As
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a result, because both values of the squeezed feature comes from different modalities in the CEM block, we
pass the squeezed features through an LSTM to leverage sequential dependencies within the fused squeezed
features (xc

fsq
). This is beneficial for capturing nuanced relationships in the multimodal embedding space,

where specific patterns may emerge sequentially, enriching the inter-fusion modality, which builds upon
intra-fusion. Additionally, passing squeezed embeddings through LSTMs allows dynamic recalibration of the
learned features. As LSTMs update their hidden states, they can assign weights to features based on their
importance, enhancing the relevance of key features from both modalities. We used an LSTM with 8 units,
allowing the model to capture compact, yet significant, temporal relationships relevant to the size of the
squeezed feature. In equation 17, the x̄c

fsq
represents the temporal pattern of the squeezed feature learned

iteratively during the training phase.

x̄c
fsq

= LST M(xc
fsq

), where x̄c
fsq

∈ R1×2×8 (17)

Now, akin to DVM block we proceed with producing unsqueezed concatenation of the embeddings produced
from TweetVal and DVM block as:

xc
f = Fc(Xi

DV M , Xt
T L) = Xi

DV M ⊕ Xt
T L, where xc

f ∈ R1×1792 (18)

xc
f ∈ R1×1792 → RESHAPE → xc

f ∈ R1×2×896 (19)

Xc
CEM = Fw(x̄c

fsq
, xc

f ), where Xc
CEM ∈ R1×1×896 (20)

The output of equation 20, Xc
CEM , represents the cumulative intra- and cross-modal representation, which

is then passed into the classification stage, marking the progression to stage III of DAMM.

3.1.4 Classification Stage

The final stage of the DAMM leverages the synergistic output from the previous stages. The classification
component of DAMM is primarily supported by a Multihead attention mechanism followed by a fully-connected
layer (see in figure 3). This is pivotal in translating the fused multimodal representations into task-specific
outputs, effectively addressing the challenges posed by both binary and multiclass classification problems.
Multihead attention mechanisms allow the modeling of complex inter dependencies among the fused image-text
feature representations. By utilizing multiple attention heads, the model can focus on diverse aspects of the
fused data simultaneously. Each head (consisting of q, k, and v, produced from input with learnable matrices
Wq, Wk, and Wv) operates with a key dimension of 64, ensuring a rich and detailed capture of relationships.
Subsequently, the contextually enriched information is passed through an LSTM layer with 256 units and
then through a series of dense layers, ultimately narrowed down to the number of labels we aim to predict.
The final output is wrapped with a softmax activation function, categorizing the memes into their respective
classes.
Loss Function — Sparse Categorical Cross-Entropy (SCCE) is a loss function that addresses the memory
inefficiency and computational complexity issues of Categorical Cross-Entropy (CCE) when dealing with large
output spaces. While CCE is defined as CCE = −

∑N
i=1 yi log(ŷi) and works well for one-hot encoded labels,

it can be inefficient for tasks with multi classes. SCCE simplifies this by using integer labels directly, with
the equation SCCE = − log(ŷi). We have implemented the SCCE with prior distribution to incorporate prior
knowledge about the data distribution into the loss function. This method adjusts the predicted logits, ŷ, by
adding a scaled log-prior distribution, where α is a tunable temperature parameter. The prior distribution is
defined as prior = [p1, p2, . . . , pC ], where C is the number of classes. The log-prior is computed as log(pi + ϵ),
where ϵ is a small constant to prevent log(0). The modified loss function is expressed as:

LPSCCE = LSCCE (ŷ + α log(prior + ϵ)) (21)

Here, ŷ is the predicted logits (without softmax), α is the scaling factor, and prior represents the prior
probabilities of each class. This approach helps in incorporating class distribution knowledge directly into the
training process, improving model performance when prior knowledge is available.
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4 Results and Discussion

In this section, we formally analyze the efficacy of DAMM in comparison to existing approaches on the
same datasets using some standard evaluation metrics. The focus during evaluation is on approaches that
emphasize modality fusions with respect to context elevation for accurate identification, to assess the impact
of same-modality and different-modality fusion within a network.

4.1 Implementation Setup

For implementing DAMM, we used Google Colab and Kaggle, utilizing a T4 GPU with ∼13GB of RAM and
∼112GB of storage. We used a variable number of epochs depending on the dataset, with 30 epochs being
the most frequent. During training, we saved the models based on the lowest validation loss and highest
F1 score, using the ModelCheckpoint available in Keras. However, on the testing data, the trained models
were evaluated using the models saved with the lowest validation loss. The evaluation metrics after every
epoch were calculated using the scikit-learn library. All experiments were conducted with a batch size of 256
data samples. The Adam optimizer was used during training with a learning rate of 0.0001. The embedding
extraction process was performed statically, indicating that embedding extraction and fusion were carried out
in separate environments.

4.2 Evaluation Metrics

1. Accuracy (ACC):
Accuracy measures the proportion of correctly classified samples out of the total number of samples
and provides an overall evaluation of the model’s performance across all categories, calculated as
Accuracy = Tp+Tn

Tp+Tn+Fp+Fn
, where Tp represents True Positives, Tn represents True Negatives, Fp represents

False Positives, and Fn represents False Negatives.

2. Precision (P):
Precision evaluates the proportion of samples predicted as belonging to a certain category that are actually
correct, focusing on reducing false positives, and is given by Precision = Tp

Tp+Fp
, where Tp and Fp are True

Positives and False Positives, respectively.

3. F1-Score: The F1-Score, which is the harmonic mean of Precision and Recall, balances the trade-off
between these two metrics and is defined as F1-Score = 2 · Precision·Recall

Precision+Recall , where Precision is the proportion
of correctly predicted positive cases to all predicted positive cases, and Recall is the proportion of correctly
predicted positive cases to all actual positive cases.

F1-Score(Macro) (F1-M) : Macro average computes the metric for each category individually
and then takes an unweighted average, ensuring equal consideration for all categories, defined as
Macro Average Metric = 1

N

∑N
i=1 Metric for Meme Class i, where N is the total number of meme categories,

and Metric for Meme Class i is the performance metric (e.g., Precision, Recall, F1-Score) for the i-th category.

F1-Score (Weighted) (F1-W): The weighted average calculates the metric by considering the
proportion of samples in each category, thereby reflecting real-world distributions, and is given by
Weighted Average Metric =

∑N
i=1 wi · Metric for Meme Class i, where wi = Number of Instances in Meme Class i

Total Instances ,
N is the total number of categories, and Metric for Meme Class i is the performance metric for the i-th
category.

4.3 Datasets

To thoroughly evaluate DAMM, we conduct experiments using four standard datasets, each designed to address
different aspects of hateful content, including misogyny, offensiveness, abusiveness, and violence. Detailed
descriptions of these datasets are provided below. Examples of hateful memes (see figure 6a) and non-hateful
memes (see figure 6b) from all four datasets are illustrated in figure 6. It is important to note that the
presence of derogatory language alone does not inherently classify a meme as hateful. A meme is categorized
as hateful only if it specifically targets or mocks a particular group, gender, or race (refer to section 1). We
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MEMOTION 3MULTIOFF MIMEMAMI

(a) Samples of Hateful memes

MULTIOFF MEMOTION 3MAMI MIME

(b) Sample of Non-hateful memes

Figure 6: Sample of hateful and non-hateful memes for each dataset.

utilize a Word Cloud visualization, as shown in figure 7, to highlight the distribution of harmful words across
the four datasets. This representation provides an intuitive and impactful way to identify frequently occurring
harmful terms, with their dominance in the word cloud corresponding to their frequency in the datasets. A
class-wise distribution of memes for four datasets is shown in figure 8. About 40% of the memes are neutral
in the Memotion 3 dataset. An equal distribution class is observed on both MAMI and MIME datasets.
MultiOFF constitutes a total of about 40% of offensive memes.
MAMI: This dataset originates from the SemEval-2022 Task 5: Multimedia Automatic Misogyny Iden-
tification (MAMI) challenge [33], specifically Sub-task A, which focuses on binary classification of memes
as misogynistic or non-misogynistic. Developed to address the growing prevalence of misogyny in online
spaces, it consists of 15,000 memes sourced from platforms like Twitter, Reddit, 9GAG, and Imgur. Of these,
11,000 memes are annotated by human evaluators, ensuring a balanced distribution of misogynistic and
non-misogynistic content for supervised learning tasks. The annotations are performed through a rigorous
crowd-sourcing process, ensuring the reliability and relevance of the labels for detecting misogynistic content.
This dataset provides a challenging benchmark for evaluating multimodal learning methods in identifying
misogyny. We preserve the original data distribution, with 9,000 samples for training, 1,000 for validation,
and 1,000 for testing. Following the approach of Grasso et al. [34], where they test the efficacy of their
proposed approach on the validation dataset due to the unavailability of the test dataset, we also test and
report the performance of DAMM in a similar data distribution. Table 1 summarizes the four datasets used in
the study, including their respective splits for training, validation, and testing:

Table 1: Splitting of train, validation and test sets of the datasets used here
Dataset Train Validation Test Total
MAMI[33] 9000 1000 1000 11000
MultiOFF[35] 445 149 149 743
Memotion 3[36] 7000 1500 1500 10000
MIME[37] 512 128 160 800
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MultiOFF: The MultiOFF dataset [35] is created to detect offensive content in memes by combining text and
visual information, addressing the lack of multimodal datasets for such analysis. It is built using memes from
the 2016 U.S. presidential election, sourced from platforms like Reddit, Facebook, Twitter, and Instagram.
Preprocessing involves cleaning text captions, removing irrelevant metadata, and validating image URLs. The
memes are annotated as offensive or non-offensive by a diverse group of annotators, following clear guidelines
that consider personal attacks, homophobic or racial abuse, attacks on minorities, and sarcasm. The dataset
includes 743 annotated memes, balanced for offensive and non-offensive categories, and split into training,
validation, and test sets. From the dataset, 445 samples are used for training, whereas 149 samples are used
for each validation and testing. MultiOFF is a valuable resource for studying the complex interplay of text
and images in memes, supporting the development of multimodal machine learning models and addressing
challenges in analyzing implicit offensive content.

(a) MAMI (b) MultiOFF (c) Memotion 3 (d) MIME

Figure 7: Word clouds representing the most frequent terms in four datasets: MAMI, MultiOFF, Memotion
3 and MIME

Memotion 3: The Memotion 3 dataset is a novel resource designed for sentiment and emotion analysis in
memes, released as a shared task in AAAI ’23 [36]. It focuses on multilingual memes, particularly Hindi-
English (Hinglish) memes. The dataset consists of 10,000 annotated memes, each featuring a combination of
visual and textual components, making it a multimodal dataset. The Google Vision API was used to extract
text from memes, while the meme images were scraped from platforms such as Reddit and Google Images.
Multiple tasks are given to solve using the dataset. Our model aims to solve Task A which is dedicated to
an overall sentiment analysis of memes based on the categories: ‘negative,’ ‘neutral,’ and ‘positive.’ Other
tasks in this dataset focus on multi-level classification of ‘emotions’, including ‘motivational’, ‘sarcastic’, and
‘humorous’ content. The dataset is divided into 7000 samples for training, whereas validation and testing
contain 1000 samples each.
Misogynistic-MEME (MIME): The Misogynistic-MEME dataset [37] focuses on facilitating the detection
of misogynistic contents in online memes, addressing the growing issue of cybersexism, which includes abusive
remarks, body shaming, stereotypical comments, etc. It should be noted that in the literature, this dataset is
referred to as Misogynistic-MEME, which we have referred to as MIME throughout this paper for simplicity.
This multimodal collection comprises 800 memes, with an equal balance of 400 misogynistic and 400 non-
misogynistic memes. These memes were collected from popular social media platforms, such as Facebook,
Twitter, Instagram, and Reddit, as well as from websites dedicated to meme creation and collection. To
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Figure 9: KDE plot of all four datasets showing the distribution of text lengths associated with memes.

ensure diverse and authentic representations, memes were curated using specific misogyny-related keywords,
including themes like body shaming, stereotyping, objectification, and violence. 160 samples are kept for
testing DAMM’s performance while 512 samples and 128 samples are kept for training and validating DAMM.
Each meme is annotated with several key attributes, including a unique identifier, the manually transcribed
text from the image, and binary labels related to the presence of misogynistic content, aggressiveness, and
irony, as assessed by both domain experts and crowd-sourced annotators.
Figure 9 presents a KDE (Kernel Density Estimation) plot for all four datasets. This visualization offers a
comparison of textual characteristics across the datasets, providing insights into variations in text lengths
and their overall distribution. of the extracted captions from meme images. The density plots show that most
caption lengths average between 30 and 40 words, with a density ranging from 55% to 70% for the Memotion
to MIME dataset. In contrast, for the MultiOFF dataset, a notable number of captions have lengths ranging
from 50 to 100 words, which causes the curve to be more spread out compared to the other three datasets. It
should be noted that slight discrepancies may exist between the actual number of words in the embedded
captions on images and the actual extracted captions, depending on the OCR methods used for each dataset.

4.4 Significance of Modality Fusion

In the context of meme classification, for a meme to be classified as hateful or harmful, as discussed above
(refer section 1) it is often the two-sided cooperation between the visual content and the accompanying
text that completes the necessary semantic context for classification into a specific category. As shown in
figure 1, the presence or absence of textual content can influence the perceived meaning of an image, leading
to a misinterpretation that contradicts its actual classification. Textual features from images are typically
extracted using Optical Character Recognition (OCR) solutions such as Google API, Tesseract, or Amazon
Textract. These methods extracts texts compared to processing embedded text in meme images through
visual encoders, which treat textual content as visual features. This approach often misses crucial linguistic
patterns, resulting in features that lack the depth and precision necessary for accurate classification. However,
relying solely on a single modality, either the image or the text can often lead to misclassification by failing to
capture the full context or nuanced meaning of memes. This underscores the importance of integrating both
modalities — or all available sources of information to achieve a more accurate and holistic understanding
of the data. We conducted a brief analysis on an image from MAMI dataset, summarized in figure 10 to
evaluate the effectiveness of the DAMM model in distinguishing between classes by emphasizing the combined
features of both modalities, as opposed to classifying based on standalone modalities. For this analysis, we
selected a misogynistic image sample from the MIME dataset, which contains a high degree of misogynistic
content and is labeled in the misogyny class (labeled as 1). We start by analyzing the visual content of the
meme by generating attention map via Grad-CAM[38], which highlights the visual features of the image,
showing that it focuses on multiples facial entities.
The image modality attention is primarily driven by passing the image features into EfficientNet-B3, which
we fine-tune, working within the DVM block to handle visual data. As shown in Figure 10, the image
modality alone does not consider the textual caption in the prediction; instead, it processes the text as part
of the visual content, which might offer some assistance in classification, but may not be always helpful
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Figure 11: Comparison of confusion matrices shows DAMM’s superior performance over DVM and TweetVal in
capturing hateful content

in influencing the outcome. This leads to a misclassification in which the model assigns the image a high
likelihood of being non-misogynistic, despite the presence of misogynistic content, due to the lack of full
contextual understanding from the text and the absence of any hateful/negative or misogynistic signs that
might persuade the visual classifier to place it in the label 1 (misogynistic) category.

Moving forward, we focus on studying the text content’s role in understanding misogyny in the sample,
utilizing LIME [39] (an Explainable AI (XAI)) framework that uses LIME values to determine feature
importance in a given context). This is facilitated by passing the OCR output through TweetVal, which
is primarily responsible for handling textual modality in the CEM block of DAMM. By applying LIME to
the meme caption, we can visualize the focus on each token of the text via dual shades (orange and blue)
representing non-misogynistic and misogynistic content, respectively. The opacity of the shades highlights
the importance of each word in determining the final classification. In this case, the meme was incorrectly
classified as non-misogynistic due to incomplete understanding or insufficient focus on critical features. For
example, words like “girls” and “kitchen” influenced the classification towards the non-misogynistic label (0).
However, words like “fun” and “feel” were overlooked in conjunction with “kitchen,” causing the model to
subtly miss the misogynistic undertones of the entire content. The absence of critical features is effectively
addressed by the DAMM block, as demonstrated in Figure 10 (in the right). In this case, the content is
accurately classified as misogynistic with high confidence, leveraging the complementary structure across
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both modalities. Some samples may perform well using standalone models such as DVM, TweetVal, or other
encoder-based models. In certain cases, an enhanced architecture or standalone modality based model may
outperform the DAMM. This can be attributed to the limited interpretability of such models. We observed that
DAMM tends to deliver superior performance compared to standalone models. This is evident in Figure 11,
where the confusion matrix for two standalone models (left – DVM, right – TweetVal) is shown alongside the
DAMM model (right).
The correctly classified samples, represented by the diagonal alignment of respective correct prediction classes,
are strongly highlighted, underscoring the robust performance of DAMM in identifying misogynistic content.
DAMM outperforms in finding misogynistic memes more correctly when compared to the value findings from
individual modalities, images and text, respectively.

4.5 Analysis of Results

In this section, we present a comprehensive evaluation of DAMM’s performance across the selected datasets. The
evaluation is further categorized based on its efficacy in classifying hatefulness, which encompasses specific
subcategories such as misogyny, politically offensive content, and generalized hate speech (not associated with
a particular category). A detailed summary of DAMM’s performance metrics—including accuracy, precision,
and F1 scores is provided in Table 2.

Table 2: Performance of DAMM across datasets.
Dataset Accuracy Precision F1
MAMI[33] 0.835 0.835 0.835
MultiOFF[35] 0.664 0.664 0.663
Memotion 3[36] 0.367 0.364 0.363
MIME[37] 0.925 0.925 0.925

DAMM on Misogyny Detection. The earliest dataset in our comparison is the MAMI dataset, which is a
part of SemEval-2022 Task 5: Multimedia Automatic Misogyny Identification [33]. In this task, the Macro-F1
score is utilized as the official evaluation metric for assessing the performance of models. DAMM leverages the
synergistic pattern contextualization of memes for MAMI misogynistic meme samples, resulting in significantly
improved outcomes compared to most existing methods, achieving an F1 score of 0.835, accuracy of 0.8349,
and precision of 0.8350. Regarding the loss, as illustrated in Figure 12a, the loss visualization for the MAMI
dataset demonstrates a relatively consistent yet narrow gap between training and validation losses across 30
epochs. Despite minor fluctuations in validation loss, it remains stable, indicating that the model generalizes
effectively to unseen data with minimal overfitting and is stabilizing well.
Through the ModelCheckpoint mechanism, we saved the best-performing model, the DAMM framework achieved
superior empirical results during the testing phase of the experimentation. As shown in Figure 13a, the
model correctly classified 415 non-offensive instances (class 0) and 420 offensive instances (class 1). However,
it misclassifies 85 non-offensive instances as offensive and 80 offensive instances as non-offensive. Over
the course of training across 30 epochs, the validation F1 score reached its maximum at the 14th epoch,
attaining a peak value of 0.8350. This represents an improvement of 0.187 from the F1 score of 0.8197
observed at the first epoch. This performance surpasses that of several proposed fine-tuned and pre-trained
architectures, highlighting the zero-shot capabilities of DAMM. Furthermore, it underscores the effectiveness of
the cross-dual-level fusion approach used in our approach. Table 3 summarizes all the model performances on
the MAMI Dataset.
DAMM outperforms the method proposed by Hakimov et al. [40] by a margin of 0.101, which utilized a standard
CLIP encoder for image and text processing in their multimodal study of misogynistic memes, achieving an
F1 score of 0.734 on the same dataset. Cao et al. [41] proposed a modularize network architecture for hateful
meme detection, utilizing LoRA modules fine-tuned from large language models (LLMs) alongside a module
composer to enhance task-specific reasoning in low-resource scenarios. Their approach achieved a maximum
accuracy of 0.611 across all experiments, where as, DAMM demonstrates a better accuracy by an increase of
0.224, reinforcing efficacy of our method. This highlights that, even without the presence of reasoning-based
modules within deep neural networks and advanced tuning techniques, the choice and implementation of
fusion strategies play a pivotal role in accurately identifying misogynistic cues in memes.
A recently proposed MISTRA framework [53], which we surpasses by a significant increase of 0.10 in F1 score,
compared to MISTRA’s 0.735. MISTRA utilizes a multimodal approach that utilizes CLIP and DistilBERT
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Figure 12: Training and Validation loss curves for four datasets: MAMI, MultiOFF, Memotion 3 and MIME
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Figure 13: Confusion matrices illustrating DAMM performance across four datasets: MAMI, MultiOFF,
Memotion 3, MIME.

for image and text feature representation, respectively, combined with a Variational Autoencoder to reduce
high dimensionality into a latent space, resulting in a modest 1.5%. improvement. However, this approach
does not surpass the effectiveness of inherently capturing the same modality in diverse ways, as demonstrated
by DAMM, which is comparatively a simpler model architecture while yielding superior results. Additionally,
MISTRA utilizes dual fusion of text modalities, with text representations dynamically extracted from meme
images via BLIP and parallely by DistilBERT. These are then fused with image embeddings at the same
layer using triple fusion. In contrast, our method of weighted embedding fusion provides the model with
a more nuanced understanding of the relative contributions of each modality. This enables DAMM to better
capture modality-specific features and achieve enhanced performance.
Another substantiation of the effectiveness of integrating weighted embedding fusion during concatenation for
intra-modality and inter-modality fusion is demonstrated by a recent approach, [52], that employs multiple
vision-transformer (Swin, ConvNeXt, and ViT) and text-transformer based models (BERT, ALBERT,
and XLM-R) for detecting misogynistic memes. This approach performs standard early concatenation of
embeddings before passing them through a single perceptron layer, achieving an F1 score of 0.728, showing
0.107 lower than that achieved by DAMM. These findings emphasize the pivotal role of advanced fusion
techniques in effectively capturing the contextual interplay between textual and visual modalities, particularly
in the heterogeneous and complex representations inherent in meme images.
Evaluating DAMM on Memotion 3 For the Memotion 3 dataset, we focus solely on Task A, which involves
understanding the overall sentiment of memes, without delving into specific aspects or degree of hate (such
as slight misogyny or high politically offensive content). We achieve the highest weighted F1 score of 0.363,
surpassing the top scorer of the Memotion 3 challenge, NUAA-QMUL-AIIT[28], which has a F1 score of 0.344 by
0.019 on the test dataset. Table 4 summarizes all results on the Task A, DAMM outperforms NYCU_TWO [54]
by 0.021, CUFE by 0.026, CSECU-DSG by 0.03, and the Baseline [55] established by the challenge organizers
by 0.031. This demonstrates the impact of weighted embedding fusion in tackling multimodal hate speech, in
an entwined manner, covering both image-wise and image-text fusion.
In the same challenge, wentaorub[56], the runner-up of the challenge, used an early concatenation of
embeddings obtained from a fine-tuned CLIP model. This approach achieved a test F1-score of 0.3288, using
CLIP independently for image and text embedding extraction and fusing them under a Multihead attention

20



arXiv Template A Preprint

Table 3: Summary of the performances of different approaches proposed on the MAMI dataset. DAMM scores
are highlighted in gray, and the second-highest score is italicized.

Approach Year Model Accuracy Precision F1-Score (M)
Oscar-Large [42, 43] 2022 Multimodal Pre-training 0.696 - 0.689
Uniter-Large [44, 43] 2022 Multimodal Pre-training 0.692 - 0.684
VisualBERT-Large
[45, 43]

2022 Multimodal Pre-training 0.692 - 0.68

ERNIER-Vil-Large
[46, 43]

2022 Multimodal Pre-training 0.715 0.707

DD-TIG [43] 2022 ERNIER-Vil-large + Word
Masking + Image Captioning 0.794 - 0.793

SRCB [22] 2022 CLIPImage + XGBoost - - 0.776
RIT Boston [47] 2022 CLIPImage+Text +

Semi-supervised Learning - - 0.778
ASRtrans [48] 2022 MMBT + VisualBERT - - 0.761
Poirot [49] 2022 ResNet + Sentence-BERT +

Graph NN 0.759
AMS_ADAN [50] 2022 ResNet-18 + BERT - - 0.746
MISTRA [51] 2024 DistilBERT + CLIP + VAE +

BLIP - 0.773 0.715
VisualBERT COCO [45,
34]

2024 Multimodal Pre-training - - 0.742

KERMIT [34] 2024 Knowledge Graphs +
ConceptNet + ConcatBERT - - 0.834

V-LTCS [52] 2024 BERT + ViT 0.666 0.614 0.728
DAMM (Ours) 2025 EB3 + CLIP + TweetVal 0.834 0.835 0.835

framework. This highlights that even when using robust vision-language models like CLIP and training
them on in-domain specific datasets, our approach outperforms it by 0.0341 through the efficient framework
utilizing a frozen CLIP encoder based on the effective fusion mechanism used.
Throughout the training, we observe spikes in loss, with both increases and decreases, while training the
model (see Figure 12c). On this dataset, we also surpass Ignacio et al. [57]’s approach by 0.0148 on F1 metric,
where they use a two-stage method utilizing large language models and U-Net Encapsulated Transformers
(UET). The first stage helped in generating BLIP-2 captions, which in our case is done directly by the
DVM block. In the second stage, they used GPT-4 integration and KeyBERT for key-phrase extraction to
understand the essential textual content. In contrast, we achieved this with the CEM block, making our
approach effective. This eliminates the need for large language models for identifying hate, making it easier
to use DAMM. We emphasize on generalizing capabilities of DAMM in detecting negative hate speech to capture
and identify negative content on the Internet and social media, which can then be used to narrowly classified
based on external domain-specific tuned model.

Table 4: Summary of the Weighted F1 scores of different approaches proposed on the Memotion 3 dataset.
DAMM scores are highlighted in gray, and second highest score is italicized.

Model Year Approach F1-Score
NYCU-TWO [54] 2023 SwinTransformer + CLIP 0.342
CUFE [55] 2023 Hinglish-DistilBERT + ResNet18 0.338
Baseline [55] 2023 Hinglish-BERT + ViT 0.339
wentaorub [56] 2023 CLIPImage + CLIPText + OSCAR 0.329
NUAA-QMUL-AIIT [28] 2023 SEFusion: RoBERTa + CLIP-ViT 0.344
CSECU-DSG [55] 2023 — 0.333
Doc HMT E3 [57] 2024 GPT4 + BLIP-2 + KeyBERT + U-Net 0.349
Doc HMT E10 [57] 2024 GPT4 + BLIP-2 + KeyBERT + U-Net 0.324
DAMM (Ours) 2025 EB3 + CLIP + TweetVal 0.363

DAMM on Identifying Politically Offensive Content. For MultiOFF, the baseline is based on the official
experiments from the dataset release [35], which focuses on politically offensive meme identification, using the
weighted F1 score as the official metric and also serves as the baseline for this dataset. The traditional deep
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learning approach uses to handle modalities independently including variants of LSTM (stacked, biLSTM)
and a deep CNN network, VGG16. Their experiments achieve the highest F1 score of 0.54 when using CNN
for the textual modality, and 0.50 in a multimodal setting [35]. In contrast, our approach surpassed this
baseline by achieving a score of 0.663. This represents a 0.163 absolute improvement over the multimodal
approach of the baseline. As can be seen in Table 5, DAMM consistently outperforms all other multimodal
and unimodal approaches from the baseline experiments, including Logistic Regression, Naive Bayes, DNN,
and Stacked LSTM [58]. As shown in Figure 13b, for MultiOFF, DAMM correctly classified 67 non-offensive
instances (represented by class 0) and 32 offensive instances (represented by class 1). However, it misclassified
24 non-offensive instances as offensive and 26 offensive instances as non-offensive. This highlights that
while DAMM achieves comparable results to the latest approaches, significant improvements are still needed in
handling class imbalances and borderline cases. Over the course of 30 epochs in Figure 12b), the training
loss decreased from 0.6796 to 0.3311, while the validation loss showed a more modest decrease suggesting
potential marginal overfitting, indicating that the model effectively learned from the training data.
Grasso et. al. proposed KERMIT [34], a framework that utilizes external knowledge to improve the
classification of harmful memes, and uses ConcatBERT which internally uses BERT and ResNet-152 to
process text and visual information in multimodal setting. KERMIT builds a knowledge-enriched information
network with relevant external knowledge sourced from ConceptNet. The reliance on external knowledge gives
KERMIT an advantage over DAMM in handling edge cases, as memes are increasingly dynamic and obscure.
However, DAMM outperforms KERMIT on the MultiOFF dataset with a margin of approximately 0.012, as
KERMIT achieved an F1 score of 0.651 on the test dataset. With respect to KERMIT, DAMM, without any
external connections, benefits from a more comprehensive modality perspective by leveraging pretrained data
with efficient, learnable blocks (CEM, DVM) that capture deep contextual knowledge.
We also outperform the novel disentanglement-based framework, DisMultiHate, proposed by Lee et al.
[59], which focuses on simultaneously extracting relevant entities from both image and text modalities,
processing them through respective visual and textual encoders, and translating them into a shared latent
space. Our approach achieves a 0.203 higher from their 0.646 F1 score. This improvement underscores
the efficacy of integrating modality information holistically into the model, rather than isolating relevancy
(disentanglement of entities) as the primary focus. Although prioritizing relevance might appear intuitively
beneficial, models that leverage a comprehensively fused representation of contextual information from both
modalities demonstrates superior capability in achieving precise classification as evident by DAMM.
To evaluate the generalizability and robustness of our approach, we tested it on a smaller and less extensively
explored dataset, Misogynistic-MEME (or MIME) [37], which has not been a primary focus in prior research
on misogyny detection in social media. As a baseline, we referred to the authors’ prior work on benchmarking
the MIME dataset for sexism detection [60]. Their experiments separately evaluated unimodal performance,
achieving an F1 score of 0.757 using the textual modality. For multimodal analysis, their early fusion
approach, employing a decision tree classifier, resulted in a lower F1 score of 0.693, which they attributed
to the dominance of visual features over textual ones. This outcome highlights the necessity for optimized
feature representation techniques when utilizing early fusion, such as weighted feature extraction or enhanced
processing strategies. In comparison our early fusion approach, DAMM, leverages dual-channel modality-specific
feature extraction, achieved a significantly higher F1 score of 0.9250. Furthermore, while their late fusion
method achieved 0.758, which DAMM outperforms it by 0.197.
We acknowledge that the dataset used for this experiment is relatively smaller compared to other experimental
setups. To assess overfitting, as observed in Figure 12d, both the training and validation losses decreased
significantly during the initial four epochs. After this point, the losses plateaued for both training and
validation, showing only a marginal decline thereafter. This indicates that the model reached its optimal
performance. With the least loss recorded and used to save the model DAMM performance results in high number
of true positives (75) and true negatives (73) (refer Figure 13d), indicating that the model accurately classified
both misogynistic and non-misogynistic memes. The relatively low false positives (7) and false negatives
(5) suggest that the model’s misclassifications were minimal, with only a small fraction of non-offensive
memes being mistakenly labeled as offensive and vice versa. This balanced distribution highlights the model’s
precision in distinguishing between the two classes, underscoring its efficiency in the task of misogynistic
meme classification.

4.6 Error Analysis

For the purpose of analyzing the factors causing errors in the images, we performed error analysis, which
DAMM faced in meme classification when faced with specific types of meme images lacking critical properties
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Table 5: Summary of the performances of different approaches proposed on the MultiOff dataset. DAMM scores
are highlighted in gray, and second highest score is italicized.

Approach Year Model Precision F1-Score (W)
Suryawanshi et al. [35] 2020 CNNText 0.390 0.540
Suryawanshi et al. [35] 2020 VGG16 0.410 0.240
Suryawanshi et al. [35] 2020 Stacked LSTM + VGG16 0.400 0.500
Suryawanshi et al. [35] 2020 BiLSTM + VGG16 0.400 0.410
Suryawanshi et al. [35] 2020 CNNText + VGG16 0.380 0.480
DisMultiHate [59] 2021 BERT + Faster R-CNN w/

MultiHeadAttention 0.645 0.646

DisMultiHate w/o Disentangle
[59]

2021 BERT + Faster R-CNN w/
MultiHeadAttention 0.614 0.608

MHA-Meme [61] 2021 LSTM + VGG-19 w/
MultiHopAttention - 0.591

MemeFier [62] 2023 CLIPImage + CLIPText - 0.625
PromptHate [63, 34] 2023 VilBERT + RoBERTa - 0.420
Bates et al. [64] 2023 CLIP w/ Meme Templating - 0.619
Grasso et al. [34] 2024 CLIP Multimodal Pretraining - 0.617
Grasso et al. [34] 2024 OSCAR Multimodal Pretraining - 0.606
Ernie-Vil [34, 46] 2024 Cross-modal + Two-stream

Transformers + Object Detection 0.540 0.531

KERMIT [34] 2024 Knowledge Graphs + ConceptNet +
ConcatBERT - 0.651

DAMM (Ours) 2025 EB3 + CLIP + TweetVal 0.650 0.663

Table 6: Summary of the performances of different approaches proposed on the MIME dataset. DAMM scores
are highlighted in gray, and the second-highest score is italicized.

Approach Year Model Accuracy Precision F1-Score (M)
Fersini et al. [65] 2019 Late Multimodal Fusion - - 0.758
V-LTCS [52] 2024 ALBERT + ViT 0.779 0.792 0.777
V-LTCS [52] 2024 BERT + ViT 0.792 0.797 0.792
DAMM (Ours) 2025 EB3 + CLIP + TweetVal 0.925 0.925 0.925

important for correct classification. Often, images containing large areas of blank content, visuals with filler
plain colors or irrelevant patterns, low-resolution content, and multilingual content are a few of the features
responsible for errors. Blank images with text overlays relying entirely on the textual component to convey
meaning often use idiomatic expressions, sarcasm, or cultural references. A subset of sample images from our
chosen datasets is visualized in Figure 14 with the possible reasons for misclassification.
Low Resolution Meme Images: Misclassification happens when the model struggles without visual
cues to support the text, the model also misinterpret the context or tone in meme having hateful content.
Low-resolution images, as shown in Figure 14(b), exemplify how they complicate classification by degrading
the clarity of both visual and textual information. Pixelation and compressed visual details make it harder
for the model to identify fine-grained features such as object edges or text readability. For instance, a meme
intended to convey humour through subtle expressions or wordplay may be misclassified if the image quality
hampers the accurate recognition of these elements. Similarly, text in low-resolution memes can become
distorted or illegible, causing OCR systems to extract incomplete or inaccurate information, as shown in
Figure 14(b).
Multilinguality in Meme Captions: The inclusion of multilingual text in memes introduces an additional
layer of complexity, as memes often blend languages or incorporate regional scripts alongside stylized fonts.
For example, a meme featuring text in both English and a regional language like Telugu can confuse a
monolingual encoder model, which lacks robust multilingual capabilities. In such cases, OCR may fail to
recognize non-English text or mix up language-specific semantics, leading to misclassification. Additionally,
the limited interpretability of multilingual features by monolingual text encoder models may prevent the
generation of rich embeddings for accurate classification. Furthermore, certain words or phrases can carry
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Table 7: Results of the ablation study for Memotion 3 and MAMI datasets.
Ablation Variation Memotion 3 MAMI

Accuracy F1-Score (W) Accuracy F1-Score (W)
Ablation 1 Added dual LSTM network in the CEM block 0.355 0.351 0.833 0.833

Ablation 2 Disabled return sequence of LSTM layer in
CEM Block 0.330 0.329 0.825 0.825

Ablation 3
Discarded Xt

T L from xc
fsq

, i.e., removed text
embeddings in the squeezed feature concatena-
tion in CEM

0.353 0.348 0.828 0.829

Ablation 4
Discarded Xt

T L from xc
f , i.e., removed text

embeddings in the unsqueezed feature concate-
nation in CEM

0.330 0.326 0.838 0.838

Ablation 5
Discarded Xi

fDV M
from xc

fsq
, i.e., removed

squeezed fused visual embeddings when produc-
ing cross-modal weighted embedding in CEM

0.324 0.317 0.833 0.833

Ablation 6
Discarded Xi

fDV M
from xc

f , i.e., removed un-
squeezed fused visual embeddings when pro-
ducing the cross-modal weighted embedding in
CEM

0.359 0.354 0.815 0.817

Ablation 7 DAMM (Ours) 0.367 0.363 0.835 0.835

different cultural meanings depending on the language which may be wrongly interpreting the contextuality
of the meme, further complicating the interpretation process.
Cluttered Visual Entities in Memes: Some images in the dataset contain cluttered visuals, presenting an
additional challenge. These images often feature dense visual elements combined with overlapping or poorly
aligned text, resulting in disturbance for the correct focus on key elements’ association with the textual
component responsible for correct classification. When multiple characters, objects, or complex backgrounds
compete with the text for attention, the model may misidentify key features, leading to errors in interpreting
the meme’s intent.
Excessive Text on Meme Image: DAMM misclassifies memes with excessive text, as shown in Figure 14(d), by
overwhelming the system with multiple, often disjointed textual elements, resulting in superficial embeddings.
The model finds it more difficult to pinpoint the exact hateful content. DAMM struggles to determine which
parts of the text are relevant for classification. It has been observed that meme images with excessive text
often use varied fonts, sizes, and alignments, further complicating OCR (Optical Character Recognition)
tasks. This variability makes it difficult for the model to identify harmful content, leading to misclassification.

Semantic
Ambiguity

Low Resolution &
Mulitlingual Caption

Text obstructs 
visual features

Patternless
visual features

(a) (b) (c) (d)

Figure 14: Misclassified meme samples, with potential reasons for misclassification mentioned in texts

4.7 Ablative Experiments

Since DAMM consists of multiple blocks superimposed in a nested manner, we performed an ablation study
to assess the effectiveness of each block. Table 7 summarizes the F1 and accuracy scores obtained from
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permutations of different configurations of blocks within the DAMM structure on the Memotion 3 dataset for
multi-class classification and MAMI dataset for binary classification task. The ablation experiments provide
critical insights into the contribution of individual components and mechanisms to overall performance. By
systematically excluding or modifying specific features of DAMM, the results highlight their influence on test
accuracy (ACC) and weighted F1-score (F1-W), which are the primary focus.
LSTM impact in CEM Block. Next, we studied the impact of the LSTM network in the CEM block
(refer sub-subsection 3.1.3), aiming to understand whether it aids in the sequential learning of interdependent
features from the DVM block (refer sub-subsection 3.1.2) representing the visual features. To investigate this,
we extended the network by adding an additional LSTM block, resulting in a total of two stacked LSTMs in
the CEM block. Replacing a single LSTM with two stacked LSTMs slightly diminished the test accuracy to
0.3553, with a similar drop in the F1 score to 0.3511, indicating a performance degradation of around 0.0103
compared to DAMM. A similar trend is visible, with a drop of 0.0021 in the F1 score of the MAMI dataset.
This suggests that while a deeper network may capture additional temporal patterns in the feature space,
it also introduces the risk of overfitting, as evidenced by the modest degradation in test scores. Therefore,
careful tuning and experimentation are required to avoid redundancy or instability introduced by LSTMs in
enhancing cross-modality representation.
Skipping Textual Modality. For stage two of DAMM, we aimed to understand the impact on performance
when excluding the textual embeddings in both unsqueezed and squeezed concatenations, to determine
whether performance significantly changes. For the first experiment, in the Memotion 3 dataset, discarding
the unsqueezed concatenation (Xt

T L from xcf
) reduced the test accuracy to 0.3534 (a drop of 0.0139) and

the F1 score to 0.3481 (a drop of 0.0153). For the same configuration, DAMM observed a drop of 0.0065 in
accuracy and 0.0060 in the F1 score, respectively in the MAMI dataset. In the second experiment with
squeezed text feature skip, that is, when excluding text-average pooling (xt

T L from xc
fsq

), it resulted in a
more moderate decline, with accuracy remaining the same at 0.3672, while F1 dipped to 0.3536. For MAMI,
the elevation in F1 shifted to 0.8380 , which can be attributed to intrinsic dataset features, underlining the
expendability of textual features in this case. These results show that textual features often provide explicit
semantic cues, such as offensive language or specific terms, which are critical for meme classification. Their
exclusion limits the model’s ability to capture such explicit patterns, leaving classification reliant solely on
visual features. This highlights the importance of modality fusion to capture the complementary interplay
between embeddings.
Skipping Visual Modality. We then conducted the same experiment, focusing on assessing the importance
of including the visual modality in both squeezed and unsqueezed versions. When the unsqueezed visual
features were skipped in the CEM block (i.e., removing Xi

fDV M
from xc

f ), the test accuracy dropped to 0.3594
and F1 to 0.3539 in the Memotion 3 dataset. This shows that image representation is crucial, offering a richer
representation by aggregating embeddings from different visual feature extractors (e.g., EfficientNetB3 and
CLIP). Without these features, the model loses its ability to discern detailed visual patterns, such as tone
and subtle symbolism, resulting in performance degradation. This highlights the importance of feature-level
complementarity in visual modalities for enhancing meme classification. Similarly, when we discard the
squeezed combination of image features (i.e., excluding xi

fDV M
from xc

fsq
), the test accuracy dropped to

0.3379 and F1-W to 0.3391, emphasizing the significance of suppressed image features. This also affects
the output of the CEM block, as the squeezed image feature is used to weight the unsqueezed fusion. The
remaining ablation experiments are conducted to understand the individual importance of visual features
from EfficientNetB3 and CLIP, as well as the impact of LSTM in the classification stage, all of which are
summarized in Table 7.

4.8 Conclusion and Future Work

In this work, we explored the efficacy of combining dual embedding channels from a single modality with
cross-modality integration to effectively capture the nuances of hate meme categorization utilizing an early
fusion . This is critical in the data- and analytics-driven world we are moving towards, aiming to create
an inclusive digital environment for the future. We propose DAMM, a three-stage framework designed using
squeeze-and-excitation techniques to generate weighted embeddings for both intra- and inter-modality through
an attention mechanism. Our approach demonstrates superior performance across four hate meme datasets
of varying genres. Our observation reveals that text plays a crucial role in shaping the overall perception
of a meme. However, we believe that substantial further work is needed, and we outline several future
directions based on this preliminary approach involving dual-stream embeddings. First, we aim to extend this
methodology to multi-label settings, where final labels incorporate varying degrees of hate speech, such as
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misogyny or offensive categories, allowing fine-grained hatespeech classification. Building on the dual visual
feature extraction employed by DAMM, we also intend to focus on a multilingual text extractor for enhancing
meme’s embedded text feature representation, encompassing diverse dialects, tones, and languages. This
could improve performance in varied cultural contexts. In the future, we plan to extend the evaluation of
DAMM on more diversified and varied datasets of different multi-modalities to better assess its performance
across different use cases. A potential approach in future may involves separating the modalities by removing
textual content from images during reprocessing. This allows the visual modality to focus on non-textual
features while the textual modality processes extracted text independently, potentially improving feature
specialization, reduced noise, and improve overall performance.
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